AURALIZAÇÃO EM ACÚSTICA DE SALAS: TÉCNICAS E IMPORTÂNCIA DA EQUALIZAÇÃO DA FONTE SONORA

FIGUEIREDO, F.L. ${ }^{1}$; IAZZETTA, Fernando ${ }^{2}$
(1) Departamento de Música, ECA-USP; (2) Departamento de Música, ECA-USP
(1) fabioacustica@gmail.com; (2) iazzetta@usp.br

Abstract

RESUMO A auralização é um importante recurso em acústica de salas, permitindo a escuta virtual a partir de sinais simulados ou medidos. Realizamos uma campanha de medições acústicas em salas parisienses e efetuamos testes subjetivos através de auralizações dos sinais obtidos. O sistema Ambisonics de primeira ordem foi adotado para o registro dos sinais e sua auralização. Utilizamos a resposta impulsiva equalizada da fonte sonora em todas as auralizações, mas para uma das salas fizemos os testes também sem tal equalização. Os resultados objetivos e subjetivos para esses dois casos (equalizado e não equalizado), bem como os procedimentos para equalização da fonte sonora, são discutidos neste artigo.

Abstract

Auralization is an important feature for room acoustics, allowing to experiment with the virtual listening of simulated or measured signals. We have conducted a series of acoustic measurements in different concert halls in Paris. The signals acquired during these measurements were used to perform subjective tests by using auralization techniques. Both the measurement and the auralization processes followed the first order Ambisonics protocol. An equalized impulse response of the sound source has been used in all auralizations, and we also tested this procedure without such equalization for one of the rooms. In this article we present and discuss the objective and subjective results for both situations (with and without equalization), as well as the procedures for equalizing sound sources.

Palavras-chave: Auralização. Ambisonics. Equalização. Parâmetros acústicos. Testes subjetivos.

1. INTRODUÇÃO

Auralização (VORLANDER, 2007) é o conjunto de técnicas que permitem a realização, em laboratório, de reproduções que simulam a acústica dos ambientes originais ou projetados, em outras palavras, são técnicas de escuta virtual em acústica de salas. Trata-se de um procedimento de fundamental importância para essa área da acústica, pois através dele são efetuados testes subjetivos de escuta, nos quais as respostas acústicas de diversas salas podem ser comparadas instantaneamente.

Em 2010, realizamos uma campanha de medições acústicas em salas de espetáculo parisenses, utilizando o sistema Ambisonics de primeira ordem para registro e posterior decodificação em uma sala acusticamente preparada, provida de 12 alto-falantes dispostos em uma estrutura
dodecaédrica, mais um subwoofer, localizada no Laboratoire d'Acoustique Musicale (LAM, Paris).

O sistema Ambisonics (GERZON, 1985) consiste em uma tecnologia particular de reprodução sonora espacial capaz de registrar e de reconstituir posteriormente o campo sonoro. Apresenta as vantagens técnicas de propiciar uma ótima qualidade de imersão espacial do ouvinte no campo holofônico reproduzido, bom grau de localização dos eventos sonoros, sustentação científica da codificação do campo sonoro original e grande flexibilidade do aparato de reprodução sonora.

As respostas impulsivas das salas foram processadas e convoluídas com amostras anecóicas de música para condução de testes subjetivos com um júri auditivo. Para que esses esse sistema funcionasse corretamente, um cuidadoso protocolo de preparação foi empregado. Uma parte desse protocolo consistiu em eliminar a influência da fonte sonora sobre o resultado final, uma vez que somente a resposta da sala nos interessa.

As eventuais distorções harmônicas provocadas nos alto-falantes da fonte sonora podem ser removidas de maneira relativamente simples no caso de uma varredura de senos ter sido usada como sinal de excitação, opção adotada por nós. Basta efetuar uma convolução com a varredura inversa, e como resultado tem-se a resposta impulsiva da sala acompanhada por traços relativos às distorções harmônicas (FARINA, 2000). Após essa convolução, todos os impulsos aparecem devidamente separados no domínio do tempo, e a resposta impulsiva isolada das distorções, localizada na extrema direita do conjunto de impulsos, pode ser selecionada facilmente.

Entretanto, resta um problema bem mais difícil de ser resolvido: a equalização da resposta impulsiva da fonte dodecaédrica, ou seja, a compensação de seu efeito de coloração. Sabe-se que a resposta em frequência das fontes sonoras não são perfeitamente planas, além de serem limitadas no domínio da frequência. Essas características afetam a qualidade da auralização, conforme analisaremos nesse artigo.

2. A EQUALIZAÇÃO DA FONTE SONORA

2.1 Obtenção do sinal equalizado

Nossa fonte sonora era formada por um emissor dodecaédrico da marca italiana Outline, juntamente com seu subwoofer. Resolver o problema da equalização, exigia como solução mais eficaz a obtenção da resposta impulsiva da fonte sonora em uma sala anecóica (LNE, Paris).

Figura 1: Sala anecóica usada para obtenção das respostas impulsivas da fonte.

O protocolo de obtenção da resposta impulsiva da fonte deve considerar que o dispositivo dotado de 12 alto-falantes pode apresentar flutuações no nível do sinal em função do ângulo de posicionamento da fonte. Por isso, obtivemos respostas impulsivas para 12 posições angulares igualmente espaçadas de 30 graus. O subwoofer foi mantido imóvel. Cada registro foi convolvido com a varredura original inversa, resultando na resposta impulsiva parcial da fonte para uma dada posição angular.

Figura 2: Resposta impulsiva parcial da fonte.

Figura 3: Resposta em frequência parcial da fonte.
A resposta parcial mostra que o sinal da fonte é relativamente fraco abaixo de 70 Hz , e acima de 7 KHz . Ainda: dentro deste intervalo o comportamento é bastante irregular, ou seja, o espectro frequencial da fonte não é plano como deveria ser para minizar a influência da fonte no resultado final da auralização. Esses apectos mostram a necessidade de equalizar a fonte. Embasados pelo caráter difuso da irradiação sonora da fonte em salas de concerto, fizemos a média das 12 respostas impulsivas, obtendo assim a resposta a ser equalizada.

Na teoria, a filtragem de equalização é descrita pela equação de convolução abaixo:

$$
\begin{equation*}
s(t) \otimes h(t)=\delta(t) \tag{Eq.01}
\end{equation*}
$$

Onde $\mathrm{s}(\mathrm{t})$ é a resposta impulsiva da fonte, $\mathrm{h}(\mathrm{t})$ é o filtro inverso a calcular e $\delta(t)$ é o Delta de Dirac.

Porém, no nível experimental, podemos apenas nos aproximar dessa meta, sendo que a qualidade e a eficácia da filtragem dependerá do procedimento técnico usado. No nosso caso, utilizamos o conjunto de plug-ins Aurora, disponibilizado por Angelo Farina (Universidade de Parma), para obter o filtro de equalização através do dispositivo Flatten Spectrum. As variáveis de entrada mais importantes dessa ferramenta são o intervalo de frequências, o tamanho da janela FFT e o grau de regularidade da resposta.

A escolha desses parâmetros é relativamente complexa, pois há interdependências na infuência de cada um deles. Por exemplo: quanto maior o intervalo de frequências selecionado, mais plano é o resultado, porém maior é a perda da razão sinal/ruído, o que passa a ser um problema para a auralização, que necessita de valores altos desse parâmetro. Temos então que ajustar as variáveis de modo a chegar a uma solução satisfatória em termos de resposta plana, alta razão sinal/ruído e boa largura na faixa de frequência equalizada. Ainda devido a questões relativas ao comportamento da razão sinal/ruído sob ação da filtragem, decidimos dividir a equalização em duas etapas: uma antes (pré) e uma depois (pós) da medição na sala de concerto. Após recorrentes tentativas, chegamos aos seguintes valores:

Flatten process Pré: FFT Length $=8192$, LF $=100 \mathrm{~Hz}, \mathrm{HF}=4 \mathrm{KHz}$, Smoothing $=0.1$

Flatten process Pós: FFT Length $=16384$, LF $=40 \mathrm{~Hz}, \mathrm{HF}=18 \mathrm{KHz}$, Smoothing $=0.03$

A equação 1 torna-se:

$$
\begin{equation*}
h_{\text {pre }}(t) \otimes s(t) \otimes h_{\text {pos }}(t)=\delta(t) \tag{Eq.02}
\end{equation*}
$$

$h_{p r e}(t)$ é o filtro inverso da pré-equalização e $h_{p o s}(t)$ é o da pós-equalização.

Na pré-equalização, impusemos resposta plana no intervalo psicoacústico mais importante (100 Hz a 4 KHz) para assegurar uma boa razão sinal ruído neste intervalo, enquanto que na pós alargamos a faixa de frequências e alteramos o fator de regularidade para obtermos um filtro de melhor qualidade. Os espectros espelhados abaixo ilustram o processo de filtragem.

Figura 4: Resposta em frequência da fonte (linha verde) e de seu filtro de pré-equalização.

Figura 5: Resposta em frequência do sinal pré-equalizado (linha verde) e de seu filtro de pós-equalização (azul).

Chegamos então à forma final da equalização da fonte sonora.

Figura 6: Resposta em frequência da RI original da fonte (linha verde), do sistema pré-equalizado (linha vermelha) e do pós-equalizado (azul).

2.2 Utilização do sinal equalizado

A meta de obter uma resposta plana e com boa razão sinal ruído foi conseguida graças aos filtros inversos desenvolvidos. Restava então preparar o sinal a ser emitido pela fonte nas salas de concerto, utilizando para isso os filtros inversos obtidos. As equações seguintes descvrevem as etapas do processo.

Primeiramente fazemos a convolução do sinal original $x(t)$ com o filtro inverso de préequalização $h_{\text {pre }}(t)$ para obter a verredura senoidal equalizada $x_{E Q}(t)$.

$$
\begin{equation*}
x(t) \otimes h_{p r e}(t)=x_{E Q}(t) \tag{Eq.3}
\end{equation*}
$$

Essa varredura equalizada é executada na sala de concerto através da fonte sonora, cuja resposta impulsiva é $\mathrm{s}(\mathrm{t})$, em seguida sofrerá influência da sala $\mathrm{g}(\mathrm{t})$ gerando o sinal final captado $\mathrm{y}(\mathrm{t})$.

$$
\begin{equation*}
x_{E Q}(t) \otimes s(t) \otimes g(t)=y(t) \tag{Eq.4}
\end{equation*}
$$

Finalmente, fazemos a convolução do sinal registrado $y(t)$ pelo sinal inverso da varredura $x^{-1}(t)$ e pelo filtro de pós equalização. Dessa forma, com auxílio das equações 2,3 e 4 , o resultado final será a desejada resposta impulsiva da sala, conforme mostrado a seguir:

$$
\begin{equation*}
y(t) \otimes x^{-1}(t) \otimes h_{\text {pos }}(t)=x(t) \otimes h_{\text {pre }}(t) \otimes s(t) \otimes g(t) \otimes x^{-1}(t) \otimes h_{\text {pos }}(t)=\delta(t) \otimes g(t)=g(t) \tag{Eq.5}
\end{equation*}
$$

A resposta impulsiva da sala chega assim à sua forma final $g(t)$, livre da coloração da fonte sonora. Comparamos as respostas impulsivas filtradas e não filtradas do auditório da Maison de Culture du Japon.

Figura 7: Resposta impulsiva não filtrada (à esquerda), e filtrada (à direita).
No início da resposta não filtrada, observamos uma oscilação que não existe na resposta filtrada. Essa oscilação é a assinatura acústica da fonte sonora. Tal assinatura se repete em medições não filtradas em outras salas, o que confirma que se trata de um efeito causado pela fonte. O mesmo procedimento de equalização foi efetuado nos 12 alto-falantes da sala de auralização.

Dado que procuramos sempre avaliar os aspectos objetivos e subjetivos dos resultados, apresentamos a seguir alguns resultados que servirão a esse fim. Primeiramente, comparamos os parâmetros acústicos da norma ISO 3382 das respostas impulsivas fitrada e não filtrada exibidas no gráfico anterior. A seguir, mostramos as variações dos parâmetros da resposta filtrada, com relação à não filtrada.

Tabela 1: variações dos parâmetros calculados a partir da RI filtrada com relação aos calculados da RI não filtrada.

RT60 (\%)	0.43
EDT (\%)	0.42
Ts (\%)	-1.45
LF (\%)	3.3
C80 (dB)	-0.17
BR (\%)	10.5
TR (\%)	16.1

Observamos que as diferanças entre os parâmetros nos dois casos é bastante baixa, estando abaixo do limite de discriminação (PELORSON, 1992) para todos os parâmetros, exceto BR e $T R$, o que era esperado pois a filtragem modifica a razão entre as frequências.

Quanto aos aspectos subjetivos, realizamos auralizações das respostas impulsivas filtradas e não filtradas, as mesma usadas para a comparação dos parâmetros. Nosso sistema de auralização decodificava as respostas impulsivas Ambisonics para os 13 canais da sala de escuta, realizando convoluções com amostras de registros anecóicos do CD Archimedes. Um júri de 11 pessoas respondeu questões comparativas entre as auralizações feitas com os sinais filtrados e os não
filtrados. Nenhuma informação quanto ao objetivo do experimento foi passada ao júri antes do teste.

A primeira questão indagava sobre o grau de diferença que era possivelmente percebido pelo ouvinte, oferecendo 4 campos de resposta: "iguais", "pouco diferentes", "bem diferentes" e "muito diferentes". A segunda questão era literal, e pedia que o ouvinte comparasse com palavras à sua escolha um amostra (relativa ao sinal não filtrado) com outra (relativa ao sinal filtrado). A terceira e última questão perguntava simplesmente qual faixa o ouvinte achava mais próxima de uma experiência sonora real.

Resultados: na primeira questão, 27% responderam "bem diferentes" e 73% "muito diferentes". Na segunda questão, a amostra não filtrada foi classificada como "abafada", "grave" e "escura" quando comparada à filtrada. Finalmente, 100% dos ouvintes consideraram a amostra filtrada mais próxima de uma experiência sonora real que a não filtrada.

3. CONCLUSÃO

Seguir rigorosamente um protocolo que permita a equalização correta de uma fonte sonora dodecaédrica para pesquisas em acústica de salas é um processo difícil e trabalhoso, pois exige a obtenção de respostas impulsivas da fonte dentro de uma sala anecóica e a elaboração relativamente complexa de filtros equalizadores.

Nosso estudo mostra que, se o intuito da pesquisa é meramente a obtenção dos parâmetros acústicos da norma ISO 3382, tal empreendimento não se justifica, pois as diferenças dos parâmetros entre a situação filtrada e não filtrada são bastante baixas (exceto para BR e TR). Entretanto, se o propósito é a auralização das respostas impulsivas medidas em salas de concerto, a equalização torna-se de grande importância, pois os resultados sonoros e sua apreciação subjetiva por parte dos ouvintes diferem muito entre os dois casos, sendo qualitativamente bastante favoráveis à situação filtrada.

AGRADECIMENTOS

Agradecemos à FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) pelo financiamento atual de nosso trabalho e à CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) por financiar a pesquisa que possibilitou a coleta de dados na França. Ao NuSom (Núcleo de Pesquisas em Sonolgia, ECA - USP), por nos abrigar enquanto seus membros.

REFERÊNCIAS

FARINA, A. Simultaneous Measurements of Impulse Response and Distortion with a Swept Sine Technique. AES CONFERENCE, França, 2000.

GERZON, M. Ambisonic in multichannel broadcasting and video, J. Audio Eng. Soc., 33, 859-871, 1985.
International Organization for Standardization. ISO 3382. Acoustics - Measurement of the reverberation time of rooms with reference to other acoustical parameters, 1997.

PELERSOSN, X., POLACK, J.D. On the variability of room acoustical parameters: reproductibility and statistical validity. Applied Acoustics 37, 175-198, 1992.

VORLANDER, M. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Aachen, Springer, 2007.

